
www.manaraa.com

A Taxonomy for Computer Science
Hanno Wupper and Hans Meijer

Computing Science Institute
Faculty of Mathematics and Informatics

University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, NL

Hanno.Wupper@cs.kun.nl Hans.Meijer@cs.kun.nl

‘To design is to invent a
formally provable statement’

Abstract
We try to capture the essence of information technology and computer science, arguing that
information technologists have the same principal goal as all technologists: to create
machines with certain properties. To achieve this, they formalize the problem, i.e. abstract the
properties into a specification and invent or develop a schema, i.e. an abstraction of the
machine’s structure. Subsequently, it is their principal task to prove that the schema satisfies
the specification. Computer scientists develop mathematical and physical means to support or
even enable that task. From this, the principal research questions of computer science may be
derived.

From this viewpoint, we try to propose a consistent set of notions together with a consistent
terminology, which may clarify the relation of information technology and computer science
to other scientific disciplines and also give rise to new ideas about computer science
education.

Keywords
informatics, taxonomies, academic requirements

Acknowledgements
We wish to thank Henk Barendregt, Guy Debrock, André van den Hoogenhof, Toine Tax,
Huub van Thienen, Frits Vaandrager, Tom van Weert, and all other colleagues who
contributed to this paper with their ideas, criticism and sharp questions.

1. Introduction
In computer science there exists only limited terminological agreement. Already for
its very name one has the alternatives ‘computing science’ and ‘informatics’.
Fundamental terms like ‘state’ or ‘automaton’ or ‘specification’ or even ‘program’
may have different meanings in different contexts. Often such terms are not explicitly
defined but simply borrowed from common language, or else are defined quite
differently. It may very well be the case that only the term ‘bit’ qualifies for having a
universally accepted meaning.
This situation is an inevitable reflection of the fact that there is no common
understanding of the core of this particular branch of science—let alone a basic
understanding among the general public.

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 2

This paper tries to answer the question what information technology1 is all about and
what computer science has to do with it. In doing so, it proposes a consistent
collection of clear and unambiguous terms for notions which are essential for the core
of the discipline. In fact, these notions are the important issues, not the terms: we try
to establish a set of fundamental notions, for which we hope to find consistent terms.
We do not claim to arrive at particular new results, apart from an overall insight in the
field: information technologists and teachers and students of computer science may
find these notions helpful to disentangle complex achievements of computer science
and re-use their constituents in other contexts.

Many achievements of computer science are presented as ‘paradigms’. An example is ‘object
orientation’: its value is beyond doubt, but for information technologists who did not grow up
in the object oriented culture it may be difficult to see what it is all about. Guided by our
notions they may find, among others: a specification method that can be useful in many
contexts; a number of language issues in specification and programming languages; and an
amount of theory (abstract data types, inheritance, etc.) which can be useful as a guideline
even for someone who has to develop Fortran or Cobol programs.

Our method is to begin with a basic, abstract and general observation, which is
subsequently refined and detailed. This observation is based on a development cycle,
which is related to the various forms of the ubiquitous software life cycle of software
engineering, but tries to unify and normalize them.

It seems that in particular software engineering has produced an abundance of points of view,
of terms and of notions which sometimes look all alike and all different. What is the
difference between a program and an algorithm? What is a system? When is it appropriate to
call something a module?

The framework presented here should help to bring some order in the terminological
chaos. However, an equally important goal is the generalization of the development
cycle to the whole area of information technology. In fact we believe that every aspect
of information technology and computer science has its place in our framework. Of
course this very much depends on the understanding of the notions ‘computer
science’ and ‘information technology’, and indeed we take these notions in the widest
possible sense: it is the science of and technology of the use of computers and
computer applications, the creation of such applications, the specification of
customers’ desires, the proofs of correctness of applications, etc.
Going a step further, we are even convinced that our framework may be applied
mutatis mutandis to a much larger segment of science and technology. The discovery
and (experimental or theoretical) verification of laws of nature and the creation of
technological products from that scientific knowledge may be described and classified
in a totally analogous way. However, apart from the fact that other more established
fields of science may not be in need of such a clarification, we will not explicitly
make such claims in this paper.
Summarizing, we try to propose a consistent set of notions with respect to which all
important aspects of computer science can be understood, together with a consistent
terminology—which, however, may nevertheless rouse a debate. Moreover, we hope
that this set of notions may greatly clarify the relation of information technology and
computer science to other scientific disciplines and also give rise to new ideas about
computer science education.
We shall employ —and explain in due course— three different frameworks: a
formula, a diagram (the one resembling the software life cycle), and the tetrachotomy
theory, method, language and tool.

1With ‘information technology’ we explicitly refer to the actual, professional, manufacturing of
applications etc.

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 3

2. The formula: an information technologist’s
principal task
We begin with two fundamental notions which refer to the real world.
Definition. A machine is some physical2 object which has been intentionally
constructed from certain parts for some well-defined purpose.
Definition. A property is a physical phenomenon which can be ascribed to a
physical object.
A machine is said to have a property to express the proposition that that property is
ascribed to that machine.

Simple examples of an object’s properties are its weight, speed or colour. However in the
context of information technology one is mainly interested in complex, dynamic properties
like ‘controlling a nuclear reactor’s temperature’ or ‘navigating an aeroplane’. Here we are
primarily interested in externally observable properties. In particular the property ‘structure’
will be given a special rôle below.

We deliberately propose to restrict the term ‘machine’ to objects of the real world3. A watch
is a machine and so is a computer with or without software, but in our view a formula or a
computer program is not. One’s interest in abstract entities like programs must ultimately
stem from one’s wish to make a machine have properties such that a certain goal is achieved.

In information technology, functional correctness and efficiency have traditionally been
considered important properties of (machines executing) computer programs. Other
properties like time-constraints or reliability which first seemed too difficult to deal with (and
seemed delegated to other disciplines such as ‘reliability engineering’) have recently begun to
admit being reasoned about in a more uniform framework.

Whether a machine actually has all desired properties is the problem of adequacy.
This problem may be very hard or even impossible to decide. One may simply not know
particular laws of nature, or be blocked by fundamental inaccuracies or uncertainties of
measurement, but even if the physics are easy, the machine may still be too complex.
Moreover, discovering a property is generally much more difficult than deciding one. In the
sequel we shall divide the problem of adequacy into three subproblems: that of meaning, that
of structure and that of (formal) correctness.

Next we discuss a basic notion which is the descriptive mirror image of the one called
‘property’.
Definition. A specification is a statement of properties, in some suitable language.
A specification is said to state a property, viz., to be obeyed or fulfilled.
Whether a specification states certain properties is the problem of meaning.
Subsequently a machine is said to fulfil a specification if for each property from a
sufficiently well-defined collection, the machine has that property whenever the
specification states it.

A specification states the properties of an existing or desired machine. In the latter case the
specification may become a contract.

Whether a machine fulfils a specification is the problem of acceptance.
Given a specification, the problem of adequacy may now be decomposed into the
problems of acceptance and that of meaning.
Our fourth basic notion is the descriptive counterpart of a machine and the concrete
counterpart of a specification—in the same way as a property is the abstract
counterpart of a machine.

In the term ‘schema’ we want to capture the description of the (detailed) structure of a
machine. According to the Oxford English Dictionary structure is ‘the mutual relation of the
constituent parts or elements of a whole determining its particular nature or character’. In

2or ‘substantial’, see (Bunge), 1977
3nevertheless acknowledging its metaphorical use as in ‘Turing Machine’

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 4

other words, a machine’s structure is the specific or even characteristic way in which it is
assembled from its parts—and a schema is a description of such a structure.

Molecules, for instance, are ‘machines’ assembled from atoms by means of ‘chemical
binding’. Chemistry studies the structure of molecules, taking (only) the properties of atoms
into consideration, and not looking inside them (as suggested by their very name). On the
other hand, chemistry is not primarily interested in living cells, computer chips, plastic toys,
etc., which are in turn ‘assembled’ from particular molecules. Whereas many sciences, like
chemistry, seem to confine themselves to a more or less homogeneous class of parts,
computer science studies a whole hierarchy of parts like gates, processing elements,
instructions, programs, languages, computers, information systems, control systems and
networks.

Definition. A schema (of arity n≥0) is a pair (s, X) where s is a sequence of n
specifications and X is a structure description containing n numbered ‘place holders’
for components.

A schema must be sufficiently detailed, such that it is at least feasible to make the machine.

A machine is said to be assembled from a collection of n parts conforming to a
structure description X if it is faithfully built according to X, with each part set in the
position of the correspondingly numbered place holder.
A machine is said to be a realization of a schema (s, X) if it is assembled conforming
to X from a numbered collection of n machines which fulfil their correspondingly
numbered specifications in s.
Whether a machine is a realization of a schema is the problem of structure.

Note that a machine contains particular parts where a structure description only contains
place holders, to which a schema assigns requirements by way of specifications. The schema
treats the parts as ‘black boxes’ of which only properties are prescribed, not the internal
structure—while the structure itself is a ‘glass box’.

In summary we now have that a machine has or is supposed to have certain
properties; that a specification is a description of (those) properties; and that a schema
is a description of the (precise) structure of a machine, relative to the specification of
the properties of its parts.
A schema is said to satisfy a specification if every machine which is a realization of
the schema fulfils that specification.
This leads to the prospected formula: a schema (s, X) satisfies a specification S if any
machine that can be built according to X using parts fulfilling s, fulfils S. Formally,

(∀i: 1..#s. mi fulfils si)⇒ (m assembled X) fulfils S (*)

Since specifications and schemata are mathematical objects (descriptions of properties
and structure), we may now capture the essence of an information technologist’s task
in mathematical terms. In order to build a machine with certain properties he or she
must produce a specification S, a schema Y and a proof p, such that p is a proof that Y
satisfies S. Then, if S states the desired properties, the desired machine is a realization
of Y.

The proof p may be any mathematically acceptable proof, including fully formal proofs as
well as sufficiently precise reasoning. In fact, if information technologists discuss their
product, be it finished or in development, with colleagues or their superior or a customer,
they will primarily argue in favour of their schema satisfying the specification. This argument
can only be interpreted as a try to establish a proof, however sloppy it may be.

Actually, the only alternatives to proofs seem to be a belief in some form of higher authority
(based on power or experienced knowledge or intellect) or an insight by which the truth of a
statement is immediately clear.

Whether a schema satisfies a specification is the problem of correctness, which is
particularly hard because of its complexity.

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 5

A schema is a description of the structural composition of parts of which
specifications are given. This enables us to treat most of the complexity of the
adequacy problem in the mathematical domain: only the meaning of the specification
and the physical realization of the structure defined by the schema cannot be dealt
with mathematically.
Moreover, it admits a reduction of the complexity problem by hierarchical
decomposition. One may initially restrict the schema to large parts which are
optimally chosen to allow simple specifications and an easy structure description and
then repeat the same activity for the parts. This is referred to as the ‘Chinese Box
Principle’, where the box is composed of boxes which are composed of boxes, etc.
This procedure avoids the problem to capture all complexity at once, but only if and
when the specifications of parts hide (abstract from) details which exist only locally.
One other gain is that parts may be reused (spatially as well as temporally). A striking
example is the programmable computer, where the ‘architecture’ or ‘programmer’s
model’ is a relatively simple specification of a very complex part and one ‘only’
needs to deal with the complexity of the other part, viz. the program.
To summarize: in order to establish that a machine has a collection of properties, one
must come up with a schema and a specification, and establish that the machine is a
realization of the schema, the schema satisfies the specification and the specification
states the properties.

Of course most systems are constructed without a formal correctness proof along formula (*).
Nevertheless technologists should understand that what they are doing informally could be
formalized in a systematic way and proved mathematically.

By contraposition one may find out what may cause any ‘faults’, viz. that the machine
does not have a certain intended property. It may be that the specification doesn’t
state it, in which case one should repair the specification (by ‘declaring the bug a
feature’ or otherwise). Assuming that the specification precisely states the desired
properties, we call the machine to be ‘faulty’ (i.e. not fulfilling its specification). Then
either the schema must be incorrectly designed (and not proven anyway), or the
machine must be assembled in the wrong way, or else at least one of the parts itself is
faulty. This leads to the classification: specification mistake, design mistake, assembly
mistake, faulty component.
If a machine must be fault tolerant, there is no other way than to weaken the
specification si of the error-prone component mi until mi fulfils si and then to re-
establish the truth of formula (*).

3. The diagram: professional activities
The four notions introduced in the previous chapter give rise to the following diagram
of which they constitute the ‘cornerstones’. The five characteristic problems
introduced there appear as relations between them.

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 6

Machine Propertiesadequacy
(automatic) (dynamic)

Schema

(operational)

Specification

(declarative)

correctness

acceptance meaningstructure

formalize

verify

design

validate
realize

verify

implement

verify

In fact, the boxes refer to particular objects, i.e., instances of the respective notions.
Between (nearly) every pair of objects there exist certain arrows which capture quite
disjoint professional activities and, we believe, together cover all essential activities
carried out by working information technologists.
The diagram is a reworked version of the well-known software life cycle4, which is an
Escher-like variant of the ‘waterfall model’ (Sommerville, 1996). It is also an
idealized diagram in the sense that in practice the activities are not normally
performed in strict sequence but iterated, backtracked, etc.
The main activity of computer scientists, however, is on a meta-level, as shall be
explained in chapter 4.
Definition. To formalize is to write a formal specification which states exactly the
desired properties. This activity comprises sub-activities like their actual
formalization in some language and their structuring for purposes of presentation,
reuse, etc.
Definition. To validate a specification is to establish that that specification indeed
states the desired properties. To this end one must become sure about what will be the
case when the specification is made true. There are basically three ways to become
sure, viz. by
– insight, when the specification is so clear that we comprehend it immediately,
– prototyping, where the prototype is tested or measured, or
– reasoning, where additional properties are mathematically proven.
Definition. To implement is to physically make a machine which fulfils a given
specification. This is either accomplished rationally, by designing and realizing a
schema, or by putting parts together intuitively.
Definition. To verify a machine against a specification is to ensure that a machine
fulfils a given specification. If a correct schema of the machine cannot be produced,
verification must be performed inductively (or in ‘black box’-style) where as many
hypotheses as possible derived from the specification are verified by experiments.
Information technologists call this testing.
Definition. To realize is to physically make a machine which is the realization of a
given schema. This involves picking up the required parts and putting them together
in the right way. In the case of pure software systems, we assume —by using the
word ‘pure’— a programmable machine to be used as part. As a consequence, the

4However, we see no reason to distinguish between hard- and software systems.

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 7

realization of the machine as a whole is trivial, viz. loading a machine-readable
representation of the schema into it5. In the case of a machine in hardware one may
want to let the realization be performed automatically.
Definition. To verify a machine against a schema is to ensure that a machine is a
realization of a given schema. Note that a verification is (only) necessary if the
machine is made by an untrustworthy device, in particular a human—in which case
the verification consists of checking whether the right parts are assembled in the right
way. When the machine is very complex or cannot be opened (e.g. without breaking
down), it may be that one can only verify the machine against its specification.
Definition. To design is to elaborate a schema which satisfies a given specification.
In our framework this means no more and no less than finding a suitable schema (s,
X) such that our formula (*) becomes true. Apart from small ‘toy’ cases this activity is
too complex to be performed without computer support. On the other hand, the
activity cannot in general be fully automated. Designing is a creative mathematical
activity, which comprises finding a theorem, if necessary strengthening its
assumptions until it can be proven.
Definition. To verify a schema against a specification is to prove that a schema
satisfies a given specification. This verification must be performed deductively (or in
‘glass box’-style). The automatic part of the design will not need a proof as long as
the used tool is trustworthy. The hand-made part may be elaborated systematically
and stepwise, in which each step will need to be proven. Or the schema may be
‘invented’ in which case it must be proven from scratch to be correct.

4. The tetrachotomy: a computer scientist’s
principal task
The diagram as given in the previous chapter displays the professional activities of
working information technologists. However, the primary activity of computer
scientists is research which results in some form of support for the professional
activities. Often, such support is presented in the form of a software package or a new
language or ‘paradigm’. This may hamper dissemination and acceptance of valuable
items.

Even if one cannot afford to buy an expensive software package or to switch to a new
programming language one may benefit from pieces of theory on which they are founded or
follow a method which they are meant to support.

It may therefore be useful to separate complex results into the following classes.
Definition. A theory, which is a collection of scientific laws or theorems (‘true
statements’), usually generated by a finite collection of deduction rules from a finite
collection of axioms. Most theories are infinite, in which case one needs a proof and a
decision procedure to establish whether a statement is true.
Definition. A method, which is a collection of notions, rules and procedures which
may help to systematically find a solution for a given problem6.
Definition. A language or formalism, which is a collection of terms (or sentences,
or sequences of symbols) with well-defined syntax and semantics (which maps each
well-formed term to its ‘meaning’ in some physical or mathematical model, usually
following its syntactical structure).

5This may be the reason that in software engineering the term ‘realization’ is often used for the activity
that we call ‘design’.
6Unfortunately, methods are often calles ‘methodologies’, but that term should really be reserved for
the theory of all methods (e.g. answering the question what a method is, and what not).

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 8

Definition. A tool, which is a computer system by which parts of the professional
activities may be automated. The fact that most tools which support information
technology are themselves prime examples of products of that technology cause what
one might call a ‘strange loop of computer science’ (Hofstadter, 1997). Of course do
many technologies produce their own tools (for instance, engineering), but it seems
that in information technology it happens at an overwhelming scale7. In particular the
fact that initially software tools are the results of research by computer scientists
causes an intricate intertwining of computer science and information technology8

which is one of the primary causes of the terminological chaos referred to in the
introduction.

5. Conclusion
Summarizing, we believe that every professional activity in information technology
archetypically consists of
 – writing down a problem in some language (the specification),
 – developing a solution (a schema) for it using some method, while writing down the
partial or intermediate solutions in that same or some other language,
 – proving—on the fly or afterwards—that the schema satisfies the specification, by
showing that our formula when applied to that specification and schema is a theorem
in an appropriate theory, while
 – employing tools in doing so
and that it is the principal task of computer scientists to provide the necessary
languages, methods, theories, and tools.
Scientific understanding is impossible without abstraction. Moreover, abstraction of
the reality into mathematical models enables scientists to reason about the reality by
mathematical means. However one may need to be very careful about the appropriate
level of abstraction. In many fields of computer science one may identify a machine
with the schema of its software (‘the program is the true result’), in some other fields
one may identify a schema with its specification (‘the program is an executable
specification’), but negligent use of such abstractions may be very confusing.
Therefore we believe that one should always try to depart from the distinction
between the mathematical description of a computer program (the specification), the
bit pattern representing that program inside the computer (the schema) and their
physical combination whilst executing (the machine), which has certain effects in the
real world (the properties). The distinction appears even on the very abstract level that
our diagram represents. Not separating the three aspects is, we believe, the main cause
of the Babylonian confusion which pervades computer science and which has at least
the following consequences.
• Technical terms may have (slightly) different meanings in different research areas,
which does not favour communication among scientists.
• Computer scientists, particularly young ones—students, may have difficulties
putting results of others in context.
• It may be unnecessarily difficult to relate the results of computer science to those in
other disciplines.

7The operating systems of our current personal computers are developed by means of tools on earlier
computers, and so on until the very fourties. Perhaps the Algol 60 compiler for the ELX1 by Dijkstra
and Zonneveld is the only compiler ever completely written ‘from scratch’, but even then some kind of
assembler/loader was undoubtedly needed to bring it in the machine. In this way the development of
information technology may be seen as one gigantic bootstrap.
8Is TEX the work of a programmer or a scientist?

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 9

• Finally it may be very hard to explain to the general public or the authorities what
computer science is all about and which benefits may be expected from research
programmes.
We have tried to give a general framework for an answer to that question. People
want real machines with certain real properties. Information technologists must design
such machines in a professional way and verify that these machines indeed do what
they are expected to do. Computer science provides the theories, languages, methods
and tools for accomplishing those tasks. These may be associated with the elements of
the diagram of chapter 3 in a systematic way. Languages have their rôle in the
mathematical nodes ‘specification’ and ‘schema’ with all possible intermediate nodes.
Theory deals with the mathematical modelling of the physical nodes ‘machine’ and
the ‘properties’ and with the five basic relations between the nodes together with their
associated problems, thereby laying the foundation for the formula of chapter 1.
Methods and tools support the arrows, i.e. the professional activities, in particular
where they are done by hand or automatically, respectively. In a forthcoming paper
we will elaborate the research questions of computer science in much greater detail
along these lines and try to develop a formal basis for them, of which a very brief
outline is given in the appendix.
Systematically applying Ockham’s razor, we have touched upon a number of divide-
and-conquer-like classifications which may be of great help in explaining computer
science to, for instance, students. We summarize:

physical – mathematical
meaning – correctness – complexity – structure

formalize – design – realize
act – verify

theory – method – language – tool
professional activities – scientific research

Furthermore we hope that our approach clarifies much of the relationship with other
scientific disciplines. Computer science may learn a lot from the ‘development cycle’
in engineering disciplines as well as from the ‘verification cycle’ in the natural
sciences. The rôle of induction vs. deduction points to an ‘equal opportunity’ status
for experimental methods. Mathematics will of course teach us how to handle the
central correctness problem and how to deal with its complexity.
Finally, we have experienced that our taxonomy may help students of information
technology—the future makers of software—to distinguish essential concepts from
everyday’s whim and to see their own future profession in a broad perspective; it may
help them understand why they may have to learn new methods, etc. during their
whole professional life; it may help students of computer science to see more clearly
what their theories, languages, methods and tools are good for. Scientific as well as
professional education should be methodological and we hope that our framework is a
contribution to that.

References
Hofstadter, D.R. (1979). Gödel, Escher, Bach: an Eternal Golden Braid. Basic
Books, New York.
Sommerville, I. (1996). Software Engineering. Addison-Wesley, Reading,
Massachusetts.
Bunge, M.A. (1977). Treatise on Basic Philosophy, vol. 3: Ontology I. Reidel
Publishing Company, Dordrecht, Holland.

www.manaraa.com

HANNO WUPPER & HANS MEIJER A TAXONOMY FOR COMPUTER SCIENCE 10

Appendix. Outline of a theoretical foundation

Machine
Properties

Schema Specificationsatisfies

is realization of

states

fulfils

has

The theoretical foundation of the five relations depicted here must be based on a model of reality in
terms of mathematical structures Prop , Mach , has: Mach→B←Prop, Ass⊂(∪n: N.
Machn→Mach) and on the semantics of the specifications and structure terms, given by Spec, states:
Spec→B←Prop, Struct, assembled: Ass ← Struct.

The schema language and the remaining relations are then defined as follows.

def fulfils : Mach→B←Spec with (M fulfils S) = (∀P: Prop. S states P ⇒ M has P)

def Schema := ∪n: N. Specn× Struct(n)

def is realization of : Mach→B←(Specn× Struct(n))

 with (M is realization of (s, X))= (∃m: Machn. (∀i: 1..n. mi fulfils si) ∧ M = (m assembled X))

def sat : Schema→B←Spec with (Y sat S) = (∀M: Mach. M is realization of Y ⇒ M fulfils S)

From these, the following can be concluded, which is the justification of this approach:

Theorem. M is realization of Y ∧ Y sat S ∧ S states P ⇒ M has P

Another conclusion exhibits our formula (*) as the essence of the goal of the design process:

Theorem. ((s, X) sat S) ⇔ (∀i: 1..#s. mi fulfils si)⇒ (m assembled X) fulfils S)

In order to prove that Y sat S one needs a set of sound and complete proof rules. They depend on the
semantics of Spec and Schema and have, of course to be compatible with the relation has.

Index of definitions
acceptance 3
adequacy 3
assembled 4
assembly mistake 5
Chinese Box 5
complexity 4
computer scientist 6
correctness 4
design 7
design mistake 5
fault tolerant 5
faults 5
faulty component 5
formalize 6

fulfil 3
implement 6
information technologist 6
language 7
machine 3
meaning 3
method 7
professional activities 6
property 3
realization 4
realize 6
satisfy 4
schema 4
specification 3

specification mistake, 5
state 3
structure 4
theory 7
tool 8
validate 6
verify 6; 7

